Rxi®-5Sil MS
Assured Performance for Forensic Applications

- Exceptional column inertness means greater certainty and lower detection limits.
- Versatile selectivity lets you keep analyzing samples instead of changing columns between methods.
- Robust, low-bleed phase results in better sensitivity and longer column lifetime.
Whether analyzing postmortem samples or supporting athletic or workplace drug testing, toxicology labs are challenged with producing critical evidence that stands up under scrutiny. Increased pressure for fast, definitive results is driving labs to investigate standardized procedures and certifications aimed at reducing variability. GC column choice plays a vital role in data quality and using rugged, versatile Rxi®-5Sil MS capillary columns is an easy way to improve chromatography performance and simplify lab operations.

For years, “5” type (5% diphenyl/95% dimethyl polysiloxane) columns have been recognized as the column of choice for analyzing drugs of abuse, because they offer higher selectivity and retention for functionalized compounds than “1” type columns (100% dimethyl polysiloxane). While the selectivity of 5 type columns has many forensic applications, column performance can vary significantly among these columns. Some 5 type columns have inadequate deactivations, causing tailing peaks, or are poorly stabilized, resulting in high bleed levels, reduced sensitivity, and shorter column lifetimes. Rxi®-5Sil MS columns are based on a silarylene phase (Figure 1) that offers improved inertness and stability compared to typical 5 type columns.

Toxicology labs interested in improved data quality can increase confidence in results and reduce downtime by using Rxi®-5Sil MS columns. Exceptional inertness increases accuracy and precision at trace levels, while ruggedness assures low bleed and long column lifetime. As shown on the following pages, these versatile columns can improve lab efficiency and data quality for many different drugs of abuse, including cannabinoids, benzodiazepines, cocaine, opiates, and amphetamines.

Exceptional Inertness Means Greater Certainty and Lower Detection Limits

Column inertness improves peak shape, which greatly affects the signal-to-noise ratio and, therefore, analytical sensitivity. Rxi®-5Sil MS columns are exceptionally inert, ensuring symmetric peak shape and high response for a wide range of analyte chemistries. In addition to influencing signal-to-noise ratios, column inertness also affects retention time stability, which is an important factor for correct peak identification. Inertness is critical because peak tailing will increase as column activity increases, causing retention times to shift (Figure 2). Analyzing derivatized amphetamines or cocaine and its metabolites on highly inert Rxi®-5Sil MS columns results in symmetric peak shapes and excellent low-level response (Figures 3 and 4).
Figure 3: Robust, inert Rxi®-5Sil MS columns do not break down under harsh conditions, such as exposure to the derivatization reagents used in amphetamines analysis. Compounds shown are HFAA derivatives.

Figure 4: Low levels of derivatized cocaine and its metabolites can also be reliably separated on Rxi®-5Sil MS columns.
Rxi®-5Sil MS Columns...

Optimized Selectivity Lets You Keep Analyzing Samples Instead of Changing Columns Between Methods

While the inertness of Rxi®-5Sil MS columns exceeds typical 5 type columns, the selectivity is similar and is ideal for many toxicological applications. A wide range of analyte classes can be reliably separated on Rxi®-5Sil MS columns, including structurally-related compounds, such as benzodiazepines. Benzodiazepines are often analyzed on a fluorinated phase (e.g. Rtx®-200), but the selectivity of the Rxi®-5Sil MS column provides complete separation of all peaks of interest (Figure 5). Since a fluorinated column is no longer necessary, more time can be spent running samples with fewer time-consuming column changes between methods.

In addition to benzodiazepines, the selectivity of the Rxi®-5Sil MS column is also well-suited for the analysis of several common classes of drugs of abuse including cannabinoids, cocaine and its metabolites, opiates, and amphetamines. The Miami Dade Medical Examiner’s Laboratory provides another example of how Rxi®-5Sil MS columns can simplify analyses and improve lab efficiency. The versatility and robustness of the Rxi®-5Sil MS column assisted the lab in streamlining operations by reducing time-consuming column changes and maintenance. One of the applications routinely run on this column is the analysis of opiates (Figure 6). The selectivity of the Rxi®-5Sil MS column gives excellent separation between all compounds, and very low limits of detection are achieved since bleed is minimal. In addition, the column stands up extremely well to the derivatization reagents used prior to analysis, further increasing throughput by reducing instrument downtime for maintenance. The Rxi®-5Sil MS column also produces excellent chromatography for cannabinoids (Figure 7).

Figure 5: No need to change columns to analyze benzodiazepines—Rxi®-5Sil MS columns give excellent separation of structurally-related benzodiazepines.

![Figure 5](image_url)

<table>
<thead>
<tr>
<th>Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oxazepam</td>
</tr>
<tr>
<td>2. Lorazepam</td>
</tr>
<tr>
<td>3. Diazepam</td>
</tr>
<tr>
<td>4. Flunitrazepam</td>
</tr>
<tr>
<td>5. Prazepam</td>
</tr>
<tr>
<td>6. Clonazepam</td>
</tr>
<tr>
<td>7. Alprazolam</td>
</tr>
</tbody>
</table>

Column: Rxi®-5Sil MS, 30 m, 0.25 mm ID, 0.25 µm (cat.# 13623); Sample: 15 µg/mL in butyl chloride; Injection: inj. Vol.: 1 µL splitless (hold 1 min); Liner: 3.5 mm splitless taper w/wool (cat.# 22286-200.1); inj. Temp.: 280 °C; Purge Flow: 32.2 mL/min (20:1 split); Oven: Oven Temp: 200 °C to 330 °C at 15 °C/min (hold 3 min); Carrier Gas: He, constant linear velocity, 50 cm/sec, 23.7 psi, 163.4 kPa @ 200 °C; Detector: MS; Scan; Transfer Line Temp: 280 °C; Analyzer Type: Quadrupole; Source Temp.: 200 °C; Electron Energy: 70 eV; Solvent Delay Time: 4 min; Tune Type: PFTBA; Ionization Mode: EI; Scan Range: 50-350 amu; Scan Rate: 5 scans/sec; Instrument: Shimadzu 2010 GC & QP2010+ MS

Good peak shape with a fast elution time of <8 min.
Figure 6: Analysis of derivatized opiates on an Rxi®-5Sil MS column performed by the Miami Dade Medical Examiner’s lab.

Peaks
1. Hydrocodone
2. Codeine
3. Oxycodone
4. Hydromorphone
5. 6-Monoacetylmorphine
6. Morphine

Column
Rxi®-5Sil MS, 30 m, 0.25 mm ID, 0.25 µm (cat.# 13623)

Sample
Diluent: Ethyl acetate
Conc.: 50 ng/mL TMS derivatives

Injection
Inj. Vol.: 1 µL splitless (hold 1 min)
Liner: 3.5 mm splitless taper w/wool (cat.# 22286-200.1)
Inj. Temp.: 250 °C
Purge Flow: 21.4 mL/min

Oven
Oven Temp: 150 °C to 330 °C at 15 °C/min (hold 3 min)
Carrier Gas
He, constant linear velocity
Flow Rate: 40 cm/sec @ 13.8 psi, 95.3 kPa @ 150 °C
Linear Velocity: 40 cm/sec, 13.8 psi, 95.3 kPa @ 150 °C
Detector
MS
Mode: SIM
Temperature: 280 °C
Analyzer Type: Quadrupole
Source Temp.: 200 °C
Solvent Delay: 4 min
Tune Type: PFTBA
Ionization Mode: EI
Instrument: Shimadzu 2010 GC & QP2010+ MS

Notes
Opies were spiked into a blood sample and extracted by SPE, then derivatized with propionic anhydride.

Acknowledgement
Data courtesy of Miami Dade County Medical Examiner Department

Add Certainty to Your Analysis with Restek Reference Standards
www.restek.com/cft

Figure 7: High signal response due to column inertness and efficiency, combined with low bleed, results in maximum sensitivity for derivatized cannabinoids (50 ng/mL).

Peaks
1. Cannabidiol
2. delta-9-THC
3. Cannabinol
4. THC-COOH, THCA

Column
Rxi®-5Sil MS, 30 m, 0.25 mm ID, 0.25 µm (cat.# 13623)

Sample
Diluent: Ethyl acetate
Conc.: 50 ng/mL TMS derivatives

Injection
Inj. Vol.: 1 µL splitless (hold 1 min)
Liner: 4 mm splitless taper w/wool (cat.# 22405)
Inj. Temp.: 250 °C
Purge Flow: 100 mL/min

Oven
Oven Temp: 65 °C (hold 1 min) to 315 °C @ 15 °C/min
Carrier Gas
He, constant flow
Flow Rate: 35 cm/sec @ 65 °C
Linear Velocity: 35 cm/sec @ 65 °C

Detector
MS
Mode: SIM
Temperature: 250 °C
Analyzer Type: Quadrupole
Source Temp.: 200 °C
Solvent Delay: 7 min
Tune Type: PFTBA
Ionization Mode: EI
Instrument: Shimadzu 2010 GC & QP2010+ MS

Notes
Opiates were spiked into a blood sample and extracted by SPE, then derivatized with propionic anhydride.
Robust, Low-Bleed Phase Results in Better Sensitivity and Longer Column Lifetime

Many drug assays require that compounds be derivatized prior to analysis. Derivatization not only allows for GC analysis of compounds not otherwise amenable to gas chromatography, it also helps to produce unique, high molecular weight fragments that assist with GC-MS quantitation. While derivatization has its advantages, derivatization reagents and their byproducts are extremely harsh and can reduce column lifetimes by damaging the stationary phase. Phase damage usually manifests as increased bleed and tailing of active compounds. The unique Rxi®-5Sil MS stationary phase, with its embedded arylene groups, provides a more rigid matrix that is less likely to be damaged by derivatization reagents or their byproducts.

As a test of column lifetime, an Rxi®-5Sil MS column was subjected to repeated injections of high concentration HFBA, a harsh derivatization reagent, as well as prolonged exposure to the column’s maximum operational temperature during each injection. Throughout lifetime testing, column bleed and inertness were tested by analyzing a mixture of active test compounds that tail severely on less inert columns. After 400 injections, no change in bleed or inertness was observed (Figures 8 and 9). The enhanced stability of Rxi®-5Sil MS columns reduces phase bleed, resulting in longer column lifetimes and improved performance with sensitive mass spectrometry detectors.

Conclusion

Rxi®-5Sil MS columns are ideal for toxicity labs interested in improving data quality by increasing certainty and reducing downtime. These columns have similar selectivity to conventional 5 type columns, but are significantly more inert and robust. Rxi®-5Sil MS columns provide more accurate trace-level results and reduced downtime for column changes, offering labs a valuable tool for improving methods for the routine analysis of drugs of abuse.

Toxicology Solutions

Restek is your source for clinical and forensic toxicology solutions

- Exceptional GC and HPLC columns
- Innovative parts and accessories
- Stock and custom analytical standards
- Sample prep products
- Technical resources

www.restek.com/cft

Figure 8: Low column bleed results in long column lifetimes, saving labs replacement costs.

Figure 9: Rugged Rxi®-5Sil MS columns produce consistent retention times, even after 400 injections of derivatization reagent.

Stable, reliable response even under harsh conditions.

Column: Rxi®-5Sil MS, 30 m, 0.25 mm ID, 0.25 µm (cat.# 13623); Sample: Column test mix (cat.# 35226); Inj.: 1.0 µL split (split ratio 1:60), 4 mm recessed single taper (cat.# 20983); Inj. temp.: 250 °C; Carrier gas: helium, constant pressure; Linear velocity: 36 cm/sec @ 125 °C; Oven temp.: 125 °C; Det: FID @ 320 °C; Instrument: Agilent 6890
Restek’s low-bleed MS columns exceed requirements of the most sensitive mass spectrometers.

Rxi®-5Sil MS Columns (fused silica)
- Low polarity phase; Crossbond® 1,4-bis(dimethylsiloxoy)phenylene dimethyl polysiloxane
- Engineered to be a low-bleed GC-MS column.
- Excellent inertness for active compounds.
- General-purpose columns—ideal for GC-MS analysis of drugs of abuse.
- Temperature range: -60 °C to 320/350 °C.

The Rxi®-5Sil MS stationary phase incorporates phenyl groups in the polymer backbone. This improves thermal stability, reduces bleed, and makes the phase less prone to oxidation. Rxi®-5Sil MS columns are ideal for GC-MS applications requiring high sensitivity, including use in ion trap systems.

Get 6 columns for the price of 5!
Call 800-356-1688, ext. 4, or your Restek representative for details!

Rxi®-5Sil MS with Integra-Guard®
- Extend column lifetime.
- Eliminate leaks with a built-in retention gap.
- Inertness verified by isothermal testing.

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>15-Meter cat.#</th>
<th>30-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>0.25 µm</td>
<td>-60 to 320/350 °C</td>
<td>13620</td>
<td>13623</td>
</tr>
<tr>
<td>0.50 mm</td>
<td>0.25 µm</td>
<td>-60 to 320/350 °C</td>
<td>13635</td>
<td>13638</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>0.25 µm</td>
<td>-60 to 320/350 °C</td>
<td>13621</td>
<td>13624</td>
</tr>
<tr>
<td>0.50 µm</td>
<td>-60 to 320/350 °C</td>
<td>13639</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similar phases
- DB-Sms, DB-SmsUl, VF-Sms, CP-Sil 8 CB, ZB-Smsj, Rtx-5Sil MS

Improve Accuracy with Restek Derivatization Reagents
- Increase volatility
- Improve response
- Enhance mass spec performance

Sky® 4.0 mm ID Single Taper Inlet Liner w/ Wool
For Agilent GCs equipped with split/splitless inlets

Sky® 4.0 mm ID Precision® Inlet Liner w/ Wool
For Agilent GCs equipped with split/splitless inlets

Sky® 4.0 mm ID Cyclo Inlet Liner
For Agilent GCs equipped with split/splitless inlets

visit www.restek.com/cft for all your clinical and forensic toxicology solutions
SPP speed. USLC® resolution.
A new species of column.

Combine the speed and efficiency of superficially porous particles with the resolution of Ultra Selective Liquid Chromatography (USLC®) to more easily separate peaks and run faster without costly UHPLC.

Time-Tested Restek® Biphenyl Phase:
The established choice for bioanalytical testing since 2005
- Separates compounds that other phenyl and C18 chemistries can’t.
- Allows the use of simple, MS-friendly mobile phases.
- Restek’s most popular LC phase (also available on fully porous silica).

Also available in acid-resistant ARC-18 for large, multiclass lists by MS

www.restek.com/raptor

Experience Selectivity Accelerated

www.restek.com